Call for Papers

Track 6 – IoT Enabling Technologies

Track Chairs:
Prof. Abdennour El Rhalibi, Liverpool John Moores University, UK.
Dr. Syed Hassan Ahmed, University of Central Florida, Orlando, FL, USA.

Scope and Motivation:
In a few years we will no longer see the objects of our daily life in the same way that we used to. In fact, they are going through a deep transformation: once they get an Internet address, they become part of an interconnected environment where “things” can talk to each other as well as collect and exchange data and information with traditional networking devices or directly with humans. By sharing the information on their status and sensing the surrounding environment, communicating things will increase the awareness and the intelligence of the space we work and live in. The unleashed potential of communicating things will bring a countless set of new applications, services and products to the consumer market. This set will encompass several smart spaces such as smart cities, smart homes, smart factories, smart product management and smart farming. The "always connected" paradigm and the multitude of sensors, actors, and analysis backends that interact with each other create new challenges on the social level, technical level, engineering level, as well as for the security and privacy.

This track also focuses on technologies and applications that are human centered. Issues include emerging technologies involving sensing, smart spaces, IoT, social impact, sensing fabric integration, data collection and privacy. Application areas include social networking, news gathering, health, safety, entertainment, gaming, sports, and environment.

Main Topics of Interest:
The “IoT Enabling Technologies” track seeks original contributions in the following areas, as well as others that are not explicitly listed but are closely related:

- IoT paradigms, systems, components, architectures, applications
- Tools for developing IoT applications
- Cloud vs distributed computing for the IoT
- Security and privacy control mechanisms
- Security Testing Smart Spaces and the IoT
- MAC protocols for IoT
- Address management and End-to-End Addressability
- Object, device and service management
- RFID, sensors, actuator technologies
- Middleware for IoT
- Proactive and adaptive IoT systems
- Performance and management of smart spaces
- Experimental approaches
- Subjective studies in commercial settings and lab environments
- Mobile social networks
- Mobile healthcare
- Context awareness and situation awareness
- User interface
- Privacy and security
- Data storage and management
- Sensory User Experiences
<table>
<thead>
<tr>
<th>Testing and Verification of Sensors and IoT architectures</th>
<th>Smart spaces foundations and architectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>IoT system design, simulation and optimization</td>
<td>M2M and D2D communications in smart spaces</td>
</tr>
<tr>
<td>IoT architectures and building blocks</td>
<td>Sustainable design and technologies for smart spaces</td>
</tr>
<tr>
<td>Identity management, naming and discovery</td>
<td>Smart spaces test-beds and field trials</td>
</tr>
<tr>
<td>Energy aware IoT systems and energy efficiency</td>
<td>IoT security, privacy and trustworthiness</td>
</tr>
<tr>
<td>IoT services, applications, standards, and test-beds</td>
<td>IoT threat models and attack strategies</td>
</tr>
<tr>
<td>Social networking in smart spaces</td>
<td>IoT novel uses, frameworks and applications</td>
</tr>
<tr>
<td>IoT applications for Connected Vehicles</td>
<td>IoT system interoperability and scalability</td>
</tr>
</tbody>
</table>

Please visit http://ccnc2019.ieee-ccnc.org/authors for information on Paper Submission Guidelines and Author Requirements.